Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pharmaceuticals (Basel) ; 15(5)2022 May 17.
Article in English | MEDLINE | ID: covidwho-1875730

ABSTRACT

As COVID-19 continues to pose major risk for vulnerable populations, including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins, either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate the blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced the inhibition of pseudovirus infection by GLPG-0187. Because integrins activate transforming growth factor beta (TGF-ß) signaling, we compared the plasma levels of active and total TGF-ß in COVID-19+ patients. The plasma TGF-ß1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-ß1 levels correlated with activated TGF-ß1 levels. Moreover, the inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and it may mitigate COVID-19 severity through decreased TGF-ß1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.

2.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1506181

ABSTRACT

COVID-19 is caused by SARS-CoV-2 (SC2) and is more prevalent and severe in elderly and patients with comorbid diseases (CM). Because chitinase 3-like-1 (CHI3L1) is induced during aging and CM, the relationships between CHI3L1 and SC2 were investigated. Here, we demonstrate that CHI3L1 is a potent stimulator of the SC2 receptor angiotensin converting enzyme 2 (ACE2) and viral spike protein priming proteases (SPP), that ACE2 and SPP are induced during aging, and that anti-CHI3L1, kasugamycin, and inhibitors of phosphorylation abrogate these ACE2- and SPP-inductive events. Human studies also demonstrate that the levels of circulating CHI3L1 are increased in the elderly and patients with CM, where they correlate with COVID-19 severity. These studies demonstrate that CHI3L1 is a potent stimulator of ACE2 and SPP, that this induction is a major mechanism contributing to the effects of aging during SC2 infection, and that CHI3L1 co-opts the CHI3L1 axis to augment SC2 infection. CHI3L1 plays a critical role in the pathogenesis of and is an attractive therapeutic target in COVID-19.


Subject(s)
Aging , COVID-19/metabolism , Chitinase-3-Like Protein 1/metabolism , Aging/drug effects , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Cell Line, Tumor , Chitinase-3-Like Protein 1/antagonists & inhibitors , HEK293 Cells , Humans , SARS-CoV-2/physiology , COVID-19 Drug Treatment
3.
Elife ; 102021 01 14.
Article in English | MEDLINE | ID: covidwho-1063493

ABSTRACT

Although the range of immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is variable, cytokine storm is observed in a subset of symptomatic individuals. To further understand the disease pathogenesis and, consequently, to develop an additional tool for clinicians to evaluate patients for presumptive intervention, we sought to compare plasma cytokine levels between a range of donor and patient samples grouped by a COVID-19 Severity Score (CSS) based on the need for hospitalization and oxygen requirement. Here we utilize a mutual information algorithm that classifies the information gain for CSS prediction provided by cytokine expression levels and clinical variables. Using this methodology, we found that a small number of clinical and cytokine expression variables are predictive of presenting COVID-19 disease severity, raising questions about the mechanism by which COVID-19 creates severe illness. The variables that were the most predictive of CSS included clinical variables such as age and abnormal chest x-ray as well as cytokines such as macrophage colony-stimulating factor, interferon-inducible protein 10, and interleukin-1 receptor antagonist. Our results suggest that SARS-CoV-2 infection causes a plethora of changes in cytokine profiles and that particularly in severely ill patients, these changes are consistent with the presence of macrophage activation syndrome and could furthermore be used as a biomarker to predict disease severity.


Subject(s)
Algorithms , COVID-19/diagnosis , COVID-19/immunology , Cytokines/blood , Adult , Age Factors , Aged , Aged, 80 and over , Chemokine CXCL10/blood , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin-18/blood , Lung/diagnostic imaging , Macrophage Colony-Stimulating Factor/blood , Middle Aged , Severity of Illness Index
4.
medRxiv ; 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-955715

ABSTRACT

Although the range of immune responses to COVID-19 infection is variable, cytokine storm is observed in many affected individuals. To further understand the disease pathogenesis and, consequently, to develop an additional tool for clinicians to evaluate patients for presumptive intervention we sought to compare plasma cytokine levels between a range of donor and patient samples grouped by a COVID-19 Severity Score (CSS) based on need for hospitalization and oxygen requirement. Here we utilize a mutual information algorithm that classifies the information gain for CSS prediction provided by cytokine expression levels and clinical variables. Using this methodology, we found that a small number of clinical and cytokine expression variables are predictive of presenting COVID-19 disease severity, raising questions about the mechanism by which COVID-19 creates severe illness. The variables that were the most predictive of CSS included clinical variables such as age and abnormal chest x-ray as well as cytokines such as macrophage colony-stimulating factor (M-CSF), interferon-inducible protein 10 (IP-10) and Interleukin-1 Receptor Antagonist (IL-1RA). Our results suggest that SARS-CoV-2 infection causes a plethora of changes in cytokine profiles and that particularly in severely ill patients, these changes are consistent with the presence of Macrophage Activation Syndrome and could furthermore be used as a biomarker to predict disease severity.

5.
Oncotarget ; 11(46): 4201-4223, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-948276

ABSTRACT

COVID-19 affects vulnerable populations including elderly individuals and patients with cancer. Natural Killer (NK) cells and innate-immune TRAIL suppress transformed and virally-infected cells. ACE2, and TMPRSS2 protease promote SARS-CoV-2 infectivity, while inflammatory cytokines IL-6, or G-CSF worsen COVID-19 severity. We show MEK inhibitors (MEKi) VS-6766, trametinib and selumetinib reduce ACE2 expression in human cells. In some human cells, remdesivir increases ACE2-promoter luciferase-reporter expression, ACE2 mRNA and protein, and ACE2 expression is attenuated by MEKi. In serum-deprived and stimulated cells treated with remdesivir and MEKi we observed correlations between pRB, pERK, and ACE2 expression further supporting role of proliferative state and MAPK pathway in ACE2 regulation. We show elevated cytokines in COVID-19-(+) patient plasma (N = 9) versus control (N = 11). TMPRSS2, inflammatory cytokines G-CSF, M-CSF, IL-1α, IL-6 and MCP-1 are suppressed by MEKi alone or with remdesivir. We observed MEKi stimulation of NK-cell killing of target-cells, without suppressing TRAIL-mediated cytotoxicity. Pseudotyped SARS-CoV-2 virus with a lentiviral core and SARS-CoV-2 D614 or G614 SPIKE (S) protein on its envelope infected human bronchial epithelial cells, small airway epithelial cells, or lung cancer cells and MEKi suppressed infectivity of the pseudovirus. We show a drug class-effect with MEKi to stimulate NK cells, inhibit inflammatory cytokines and block host-factors for SARS-CoV-2 infection leading also to suppression of SARS-CoV-2-S pseudovirus infection of human cells. MEKi may attenuate SARS-CoV-2 infection to allow immune responses and antiviral agents to control disease progression.

7.
bioRxiv ; 2020 Sep 02.
Article in English | MEDLINE | ID: covidwho-721062

ABSTRACT

COVID-19 affects vulnerable populations including elderly individuals and patients with cancer. Natural Killer (NK) cells and innate-immune TRAIL suppress transformed and virally-infected cells. ACE2, and TMPRSS2 protease promote SARS-CoV-2 infectivity, while inflammatory cytokines IL-6, or G-CSF worsen COVID-19 severity. We show MEK inhibitors (MEKi) VS-6766, trametinib and selumetinib reduce ACE2 expression in human cells. In some human cells, remdesivir increases ACE2-promoter luciferase-reporter expression, ACE2 mRNA and protein, and ACE2 expression is attenuated by MEKi. In serum-deprived and stimulated cells treated with remdesivir and MEKi we observed correlations between pRB, pERK, and ACE2 expression further supporting role of proliferative state and MAPK pathway in ACE2 regulation. We show elevated cytokines in COVID-19-(+) patient plasma (N=9) versus control (N=11). TMPRSS2, inflammatory cytokines G-CSF, M-CSF, IL-1α, IL-6 and MCP-1 are suppressed by MEKi alone or with remdesivir. We observed MEKi stimulation of NK-cell killing of target-cells, without suppressing TRAIL-mediated cytotoxicity. Pseudotyped SARS-CoV-2 virus with a lentiviral core and SARS-CoV-2 D614 or G614 SPIKE (S) protein on its envelope infected human bronchial epithelial cells, small airway epithelial cells, or lung cancer cells and MEKi suppressed infectivity of the pseudovirus. We show a drug class-effect with MEKi to stimulate NK cells, inhibit inflammatory cytokines and block host-factors for SARS-CoV-2 infection leading also to suppression of SARS-CoV-2-S pseudovirus infection of human cells. MEKi may attenuate SARS-CoV-2 infection to allow immune responses and antiviral agents to control disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL